The generator matrix

 1  0  0  1  1  1  X  1  1  X  1  0  1  0
 0  1  0  1  0  1  1  0  1  1  0  X X+1  1
 0  0  1  1  1  0  1  0 X+1  X  0  1  0  X
 0  0  0  X  0  0  0  0  X  0  X  X  X  X
 0  0  0  0  X  0  0  X  X  X  X  0  0  0
 0  0  0  0  0  X  0  X  X  X  0  X  X  0

generates a code of length 14 over Z2[X]/(X^2) who�s minimum homogenous weight is 10.

Homogenous weight enumerator: w(x)=1x^0+62x^10+134x^12+134x^14+111x^16+58x^18+10x^20+2x^22

The gray image is a linear code over GF(2) with n=28, k=9 and d=10.
As d=10 is an upper bound for linear (28,9,2)-codes, this code is optimal over Z2[X]/(X^2) for dimension 9.
This code was found by Heurico 1.16 in 1.05e-007 seconds.